Alpha-synuclein is one of several key factors in the regulation of nerve activity. It is striking that single- or multiple-point mutations in the 140-amino-acid-long protein can change its structure, which leads to the protein's aggregation and fibril formation (which is associated with several neurodegenerative diseases, , Parkinson's disease). We recently demonstrated that a single nanometer-scale pore can identify proteins based on its ability to discriminate between protease-generated polypeptide fragments.
View Article and Find Full Text PDFGlycosaminoglycans are highly anionic functional polysaccharides with information content in their structure that plays a major role in the communication between the cell and the extracellular environment. The study presented here reports the label-free detection and analysis of glycosaminoglycan molecules at the single molecule level using sensing by biological nanopore, thus addressing the need to decipher structural information in oligo- and polysaccharide sequences, which remains a major challenge for glycoscience. We demonstrate that a wild-type aerolysin nanopore can detect and characterize glycosaminoglycan oligosaccharides with various sulfate patterns, osidic bonds and epimers of uronic acid residues.
View Article and Find Full Text PDFNanopore-based single-molecule analysis technique is a promising approach in the field of proteomics. In this Technical Brief, the interaction between the biological nanopore of Aerolysin (AeL) and peptides is investigated, focusing on potential biases depending on the AeL activation protocol. Our results reveal that residual trypsin, which may be unintentionally introduced in analyte solution when using a classical AeL activation protocol, can induce a significant formation of shorter peptides by enzymatic degradation of longer ones, which may lead to unwanted effects and/or misinterpretations.
View Article and Find Full Text PDFThe implementation of a reliable, rapid, inexpensive, and simple method for whole-proteome identification would greatly benefit cell biology research and clinical medicine. Proteins are currently identified by cleaving them with proteases, detecting the polypeptide fragments with mass spectrometry, and mapping the latter to sequences in genomic/proteomic databases. Here, we demonstrate that the polypeptide fragments can instead be detected and classified at the single-molecule limit using a nanometer-scale pore formed by the protein aerolysin.
View Article and Find Full Text PDFWe report here on the nanopore resistive pulse sensing (Np-RPS) method, involving pore-forming toxins as tools for polymer analytics at single molecule level. Np-RPS is an electrical method for the label-free detection of single molecules. A molecule interacting with the pore causes a change of the electrical resistance of the pore, called a resistive pulse, associated with a measurable transient current blockade.
View Article and Find Full Text PDF