Publications by authors named "M J Pali"

The selection of a biomaterial plays a very important role for the development of scaffolds for biomedical applications. Amidst, the development of nanofibrous scaffolds through electrospinning technique by selecting a suitable polymer is of more importance. Poly (2-ethyl-2-oxazoline) (PEOX) is one among the selected polymers that can be employed for electrospinning for the development of scaffolds for biomedical applications.

View Article and Find Full Text PDF

Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is  assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.

View Article and Find Full Text PDF

Lymphatic filariasis (LF) is a neglected tropical disease affecting >120 million people worldwide. LF has debilitating effects on humans and leads to morbidity and sometimes irreversible disability. A significant proportion of persons affected by LF morbidity also suffer from ill health, such as depression, anxiety, pain, stigma and social isolation due to disfigurement, as well as loss of mobility, livelihood and income.

View Article and Find Full Text PDF

Exhaled breath condensate is an emerging source of inflammatory biomarkers suitable for the noninvasive detection of respiratory disorders. Current gold standard methods are highly invasive and pose challenges in sample collection during airway inflammation monitoring. Cytokine biomarkers are detectable in EBC at increased or decreased concentrations.

View Article and Find Full Text PDF

A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans.

View Article and Find Full Text PDF