Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ("unfed" hemolymph) or fed 15 min to 2 h before hemolymph removal ("fed" hemolymph).
View Article and Find Full Text PDFA fundamental question in neuroscience is whether neuronal circuits with variable circuit parameters that produce similar outputs respond comparably to equivalent perturbations. Work on the pyloric rhythm of the crustacean stomatogastric ganglion (STG) showed that highly variable sets of intrinsic and synaptic conductances can generate similar circuit activity patterns. Importantly, in response to physiologically relevant perturbations, these disparate circuit solutions can respond robustly and reliably, but when exposed to extreme perturbations the underlying circuit parameter differences produce diverse patterns of disrupted activity.
View Article and Find Full Text PDFThe crustacean stomatogastric ganglion (STG) is a valuable model for understanding circuit dynamics in neuroscience as it contains a small number of neurons, all easily distinguishable and most of which contribute to two complementary feeding-related neural circuits. These circuits are modulated by numerous neuropeptides, with many gaining access to the STG as hemolymph-transported hormones. Previous work characterized neuropeptides in the hemolymph of the crab Cancer borealis but was limited by low peptide abundance in the presence of a complex biological matrix and the propensity for rapid peptide degradation.
View Article and Find Full Text PDFThe crab nervous system is an important model for understanding neural circuit dynamics and modulation, but the identity of neuromodulatory substances and their influence on circuit dynamics in this system remains incomplete, particularly with respect to behavioral state-dependent modulation. Therefore, we used a multifaceted mass spectrometry (MS) method to identify neuropeptides that differentiate the unfed and fed states. Duplex stable isotope labeling revealed that the abundance of 80 of 278 identified neuropeptides was distinct in ganglia and/or neurohemal tissue from fed vs unfed animals.
View Article and Find Full Text PDFStud Health Technol Inform
September 2020
The International Patient Summary Standard (EN 17269) normalizes the dataset within the European Guideline on cross-border exchange of a patient summary. This dataset has been widely appreciated and been taken as the basis for projects in both Europe and wider afield, e.g.
View Article and Find Full Text PDF