Publications by authors named "M J Morales Gorria"

Gap junctions are channels in plasma membrane composed of proteins called connexins. These channels are organized in special domains between cells, and provide for direct gap junctional intercellular communication (GJIC), allowing diffusion of signalling molecules <1 kD. GJIC regulates cell homeostasis and notably the balance between proliferation, cell cycle arrest, cell survival and apoptosis.

View Article and Find Full Text PDF

While lysosomal disruption seems to be a late step of necrosis, a moderate lysosomal destabilization has been suggested to participate early in the apoptotic cascade. The origin of lysosomal dysfunction and its precise role in apoptosis or apoptosis-like process still needs to be clarified, especially upon carcinogen exposure. In this study, we focused on the implication of lysosomes in cell death induced by the prototype carcinogen benzo[a]pyrene (B[a]P; 50 nM) in rat hepatic epithelial F258 cells.

View Article and Find Full Text PDF

We have previously shown that cisplatin triggers an early acid sphingomyelinase (aSMase)-dependent ceramide generation concomitantly with an increase in membrane fluidity and induces apoptosis in HT29 cells. The present study further explores the role and origin of membrane fluidification in cisplatin-induced apoptosis. The rapid increase in membrane fluidity following cisplatin treatment was inhibited by membrane-stabilizing agents such as cholesterol or monosialoganglioside-1.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]yrene (B[a]P) constitute a widely distributed class of environmental pollutants, responsible for highly toxic effects. Elucidating the intracellular mechanisms of this cytotoxicity thus remains a major challenge. Besides the activation of the p53 apoptotic pathway, we have previously found in F258 hepatic cells that the B[a]P (50 nM)-induced apoptosis was also dependent upon the transmembrane transporter NHE1, whose activation might result from membrane alterations in our model.

View Article and Find Full Text PDF

Regulation of the balance between survival, proliferation, and apoptosis on carcinogenic polycyclic aromatic hydrocarbon (PAH) exposure is still poorly understood and more particularly the role of physiologic variables, including intracellular pH (pH(i)). Although the involvement of the ubiquitous pH(i) regulator Na(+)/H(+) exchanger isoform 1 (NHE1) in tumorigenesis is well documented, less is known about its role and regulation during apoptosis. Our previous works have shown the primordial role of NHE1 in carcinogenic PAH-induced apoptosis.

View Article and Find Full Text PDF