Background: Intense selection of modern pig breeds has resulted in genetic improvement of production traits while the performance of local pig breeds has remained lower. As local pig breeds have been bred in extensive systems, they have adapted to specific environmental conditions, resulting in a rich genotypic and phenotypic diversity. This study is based on European local pig breeds that have been genetically characterized using DNA-pool sequencing data and phenotypically characterized using breed level phenotypes related to stature, fatness, growth, and reproductive performance traits.
View Article and Find Full Text PDFC-reactive protein (CRP) is an evolutionary highly conserved protein. Like humans, CRP acts as a major acute phase protein in pigs. While regulatory mechanisms have been extensively studied in humans, little is known about the molecular mechanisms that control pig gene expression.
View Article and Find Full Text PDFBackground: In humans and livestock species, genome-wide association studies (GWAS) have been applied to study the association between variants distributed across the genome and a phenotype of interest. To discover genetic polymorphisms affecting the duodenum, liver, and muscle transcriptomes of 300 pigs from 3 different breeds (Duroc, Landrace, and Large White), we performed expression GWAS between 25,315,878 polymorphisms and the expression of 13,891 genes in duodenum, 12,748 genes in liver, and 11,617 genes in muscle.
Results: More than 9.
In the Surveillance Tool for Outcome-based Comparison of FREEdom from infection (STOC free) project (https://www.stocfree.eu), a data collection tool was constructed to facilitate standardised collection of input data, and a model was developed to allow a standardised and harmonised comparison of the outputs of different control programmes (CPs) for cattle diseases.
View Article and Find Full Text PDFBackground: Numerous genomic scans for positive selection have been performed in livestock species within the last decade, but often a detailed characterization of the detected regions (gene or trait under selection, timing of selection events) is lacking. Cryopreserved resources stored in reproductive or DNA gene banks offer a great opportunity to improve this characterization by providing direct access to recent allele frequency dynamics, thereby differentiating between signatures from recent breeding objectives and those related to more ancient selection constraints. Improved characterization can also be achieved by using next-generation sequencing data, which helps narrowing the size of the detected regions while reducing the number of associated candidate genes.
View Article and Find Full Text PDF