Background: School closures have been a prominent component of the global Coronavirus Disease 2019 (COVID-19) response. However, their effect on viral transmission, COVID-19 mortality and health care system pressure remains incompletely understood, as traditional observational studies fall short in assessing such population-level impacts.
Methods And Findings: We used a mathematical model to simulate the COVID-19 epidemics of 74 countries, incorporating observed data from 2020 to 2022 and historical school closure timelines.
Microbiology reference laboratories perform a crucial role within public health systems. This role was especially evident during the COVID-19 pandemic. In this Viewpoint, we emphasise the importance of microbiology reference laboratories and highlight the types of digital data and expertise they provide, which benefit national and international public health.
View Article and Find Full Text PDFBackground: Traditional epidemiological models tend to oversimplify the transmission dynamics of Mycobacterium tuberculosis (M.tb) to replicate observed tuberculosis (TB) epidemic patterns. This has led to growing interest in advanced methodologies like agent-based modelling (ABM), which can more accurately represent the complex heterogeneity of TB transmission.
View Article and Find Full Text PDFBackground: Glyoxal has been implicated as a significant contributor to the formation of secondary organic aerosols, which play a key role in our ability to estimate the impact of aerosols on climate. Elevated concentrations of glyoxal over open ocean waters suggest that there exists an additional source, different from urban and forest environments, which has yet to be identified.
Methods: Based on mass spectrometric analyses of nascent sea spray aerosols (SSAs) and gas-phase molecules generated during the course of a controlled algal bloom, the work herein suggests that marine microorganisms are capable of excreting toluene in response to environmental stimuli.