El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.
View Article and Find Full Text PDFEkman's theory of wind-driven ocean currents on a rotating planet is central to our understanding of why surface currents are deflected to the right of the winds in the Northern Hemisphere and to the left of the winds in the Southern Hemisphere. The theory admits solutions for currents deflected in the opposite direction at periods shorter than the local inertial period, but Ekman did not mention these currents, and they have only rarely been observed. Here, we describe a prominent example of surface flow in the Bay of Bengal directed to the left of clockwise-rotating land breeze wind forcing using multiple years of data from a long-term deepwater surface moored buoy.
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill, yet, quantifying the sources of skilful predictions is a long-standing challenge. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible, limiting our understanding of the dynamics underpinning the advancements.
View Article and Find Full Text PDFEl Niño-Southern Oscillation (ENSO) is the dominant mode of interannual climate variability in the tropical Pacific, whose nature nevertheless may change significantly in a warming climate. Here, we show that the predictability of ENSO may decrease in the future. Across the models in the Coupled Model Intercomparison Project Phase 6 (CMIP6), we find a robust decrease of the persistence and predictability for the Central Pacific (CP) ENSO under global warming, notably in passing through the boreal spring.
View Article and Find Full Text PDFIn 2023, the development of El Niño is poised to drive a global upsurge in surface air temperatures (SAT), potentially resulting in unprecedented warming worldwide. Nevertheless, the regional patterns of SAT anomalies remain diverse, obscuring where historical warming records may be surpassed in the forthcoming year. Our study underscores the significant influence of El Niño and the persistence of climate signals on the inter-annual variability of regional SAT, both in amplitude and spatial distribution.
View Article and Find Full Text PDF