Objective: Distinguishing normal, neuropathic and myopathic electromyography (EMG) traces can be challenging. We aimed to create an automated time series classification algorithm.
Methods: EMGs of healthy controls (HC, n = 25), patients with amyotrophic lateral sclerosis (ALS, n = 20) and inclusion body myositis (IBM, n = 20), were retrospectively selected based on longitudinal clinical follow-up data (ALS and HC) or muscle biopsy (IBM).
Background: Subthalamic deep brain stimulation (STN DBS) may relieve refractory motor complications in Parkinson's disease (PD) patients. Despite careful screening, it remains difficult to determine severity of alpha-synucleinopathy involvement which influences the risk of postoperative complications including cognitive deterioration. Quantitative electroencephalography (qEEG) reflects cognitive dysfunction in PD and may provide biomarkers of postoperative cognitive decline.
View Article and Find Full Text PDF