Publications by authors named "M J KERT"

The interest in pH-sensitive textile sensors is growing in the global market. Due to their low-cost production, mechanical stability, flexibility, air-permeability, washability, and reusability, they are more suitable than electronic sensor systems. The research tailored the pH-sensitive textile by applying the pH indicator methyl orange to the cotton fabric during conventional dyeing.

View Article and Find Full Text PDF

The development of pH-responsive textile sensors has attracted much interest in recent decades. Therefore, the aim of this study was to show that screen printing could be one of the possible techniques for development of pH-responsive textile. Several parameters that could influence the pH sensitivity and responsivity of a screen-printed textile with bromocresol green dye were studied, such as textile substrate (cotton, polyamide), printing paste composition, and type of fixation (heat and steaming).

View Article and Find Full Text PDF

The chemical composition of rainwater can serve as an indicator of the excess of acidifying air pollutants. The pH value of rainwater in the presence of sulphur dioxide and nitrogen oxides, the precursors of acid rain, falls below pH 5.6, which is the limit value for acid rain.

View Article and Find Full Text PDF

The weak photostability of photochromic dyes applied to textile substrates is one of the disadvantages of the broader use of photochromic dyes in the textile industry. Therefore, the influence of optical brightener concentration on both the photocoloration and photostability of cotton fabric coated with photochromic microcapsules using a pad-dry-cure process, as well as the physical-mechanical properties and colorfastness properties, were studied in this research. Coated samples were subjected to different tests according to valid EN ISO standards; namely mass per unit area, fabric stiffness, breaking force and elongation, air permeability, and different colorfastness properties (rubbing, domestic and commercial laundering, and light).

View Article and Find Full Text PDF

The influence of different application methods on UV protective properties of white and dyed cotton functionalized with ZnO nanoparticles (nano-ZnO) was investigated. The methods differ in application procedure, time of treatment and auxiliaries used in the treating bath. The ultraviolet protection factor (UPF) was determined for untreated and functionalized samples.

View Article and Find Full Text PDF