Excitons (electron-hole pairs bound by the Coulomb potential) play an important role in optical and electronic properties of layered materials. They can be used to modulate light with high frequencies due to the optical Pauli blocking. The properties of excitons in 2D materials are extremely anisotropic.
View Article and Find Full Text PDFIn thermodynamic equilibrium, current in metallic systems is carried by electronic states near the Fermi energy, whereas the filled bands underneath contribute little to conduction. Here, we describe a very different regime in which carrier distribution in graphene and its superlattices is shifted so far from equilibrium that the filled bands start playing an essential role, leading to a critical-current behavior. The criticalities develop upon the velocity of electron flow reaching the Fermi velocity.
View Article and Find Full Text PDFTwo-dimensional (2D) tungsten disulfide (WS), tungsten diselenide (WSe), and tungsten ditelluride (WTe) draw increasing attention due to their attractive properties deriving from the heavy tungsten and chalcogenide atoms, but their mechanical properties are still mostly unknown. Here, we determine the intrinsic and air-aged mechanical properties of mono-, bi-, and trilayer (1-3L) WS, WSe, and WTe using a complementary suite of experiments and theoretical calculations. High-quality 1L WS has the highest Young's modulus (302.
View Article and Find Full Text PDFWhen two-dimensional crystals are brought into close proximity, their interaction results in reconstruction of electronic spectrum and crystal structure. Such reconstruction strongly depends on the twist angle between the crystals, which has received growing attention due to interesting electronic and optical properties that arise in graphene and transitional metal dichalcogenides. Here we study two insulating crystals of hexagonal boron nitride stacked at small twist angle.
View Article and Find Full Text PDFThe discovery of two-dimensional (2D) magnetism combined with van der Waals (vdW) heterostructure engineering offers unprecedented opportunities for creating artificial magnetic structures with non-trivial magnetic textures. Further progress hinges on deep understanding of electronic and magnetic properties of 2D magnets at the atomic scale. Although local electronic properties can be probed by scanning tunneling microscopy/spectroscopy (STM/STS), its application to investigate 2D magnetic insulators remains elusive due to absence of a conducting path and their extreme air sensitivity.
View Article and Find Full Text PDF