Publications by authors named "M J Gutierrez-Gines"

Anthropogenic systems are synonymous with linear economies that cause widespread resource waste and environmental degradation. Urban areas are hotspots for this behaviour due to their high population density and resource consumption. Changing this situation is limited by the lack of a holistic but sufficiently detailed understanding of system units where resource waste occurs.

View Article and Find Full Text PDF

Replanting is an important tool for ecological recovery. Management strategies, such as planting areas with monocultures or species mixtures, have implications for restoration success. We used 16S and ITS rRNA gene amplicon sequencing and shotgun metagenomics to assess how the diversity of neighboring tree species impacted soil bacterial and fungal communities, and their functional potential, within the root zone of mānuka () trees.

View Article and Find Full Text PDF

Biosolids as by-products of wastewater treatment can contain a large spectrum of pathogens and antibiotic resistance genes (ARGs). Insect-based bioconversion using black soldier fly larvae (BSFL) is an emerging technology that has shown to reduce significant amounts of biosolids quickly and produce larvae biomass containing low heavy metal concentrations. However, to the best of our knowledge, this is the first study investigating the transfer of pathogens and ARGs from biosolids into the process' end-products, BSFL and frass.

View Article and Find Full Text PDF

The use of native plants in land application systems for treated municipal wastewater (TMW) can contribute to ecological restoration. However, research on the potential of native species to manage the nutrients and contaminants contained in TMW is scarce. At a 10-hectare field site irrigated with TMW at >4000 mm yr, we investigated the distribution of nutrients and trace elements in the soil-plant system, comparing the New Zealand native Myrtaceae species and with pasture.

View Article and Find Full Text PDF

Soil properties in the foraging range of honeybees influence honey composition. We aimed to determine relationships between the antimicrobial properties of New Zealand mānuka () honey and elemental concentrations in the honey, plants, and soils. We analyzed soils, plants, and fresh mānuka honey samples from the Wairarapa region of New Zealand for the chemical elements and the antimicrobial activity of the honey as indicated by methylglyoxal (MGO) and dihydroxyacetone (DHA).

View Article and Find Full Text PDF