Shack-Hartmann wavefront sensing is a technique for measuring wavefront aberrations, whose use in adaptive optics relies on fast position tracking of an array of spots. These sensors conventionally use frame-based cameras operating at a fixed sampling rate to report pixel intensities, even though only a fraction of the pixels have signal. Prior in-lab experiments have shown feasibility of event-based cameras for Shack-Hartmann wavefront sensing (SHWFS), asynchronously reporting the spot locations as log intensity changes at a microsecond time scale.
View Article and Find Full Text PDFThe cool-season (May to October) rainfall decline in southwestern Australia deepened during 2001-2020 to become 20.5% less than the 1901-1960 reference period average, with a complete absence of very wet years (i.e.
View Article and Find Full Text PDFAtmospheric turbulence ( 2) modeling has been proposed by physics-based models, but they are unable to capture the many cases. Recently, machine learning surrogate models have been used to learn the relationship between local meteorological conditions and turbulence strength. These models predict 2 at time from weather at time .
View Article and Find Full Text PDFBackground: Intratumoral administration of V937, a bioselected, genetically unmodified coxsackievirus A21, has previously demonstrated antitumor activity in patients with advanced melanoma as monotherapy and in combination with the programmed cell death 1 (PD-1) antibody pembrolizumab. We report results from an open-label, single-arm, phase 1b study (NCT02307149) evaluating V937 plus the cytotoxic T-lymphocyte antigen 4 inhibitor ipilimumab in patients with advanced melanoma.
Methods: Adult patients (aged ≥18 years) with histologically confirmed metastatic or unresectable stage IIIB/C or IV melanoma received intratumoral V937 on days 1, 3, 5, 8, and 22 and every 3 weeks (Q3W) thereafter for up to 19 sets of injections plus intravenous ipilimumab 3 mg/kg Q3W administered for four doses starting on day 22.