Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy.
View Article and Find Full Text PDFStaphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S.
View Article and Find Full Text PDFStaphylococcus aureus is a leading cause of difficult-to-treat infections. The capacity of S. aureus to survive and persist within phagocytic cells is an important factor contributing to therapy failures and infection recurrence.
View Article and Find Full Text PDFStaphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S.
View Article and Find Full Text PDF() is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes.
View Article and Find Full Text PDF