Objective: To assess changes in metabolic parameters and body composition among 422 antiretroviral-naive patients randomized to 3 antiretroviral therapy (ART) strategies: protease inhibitor (PI; n = 141)-, nonnucleoside reverse transcriptase inhibitor (NNRTI; n = 141)-, or PI + NNRTI (n = 140)-based strategies with a median follow-up of 5 years.
Methods: At baseline and 1-month (metabolic parameters only) and 4-month follow-up intervals, fat-free mass (FFM) and total body fat were calculated, anthropometric measurements were performed, and fasting metabolic parameters were obtained. Rates of change and mean change were compared.
Adverse reactions to sulfonamides occur at a higher frequency in patients infected with the human immunodeficiency virus (HIV) than noninfected patients. Some studies have suggested that patients with the slow acetylator phenotype are predisposed to these reactions, whereas other studies suggest that the slow acetylator genotype is not a predisposing factor. To rationalize these seemingly contradictory observations, the authors determined the N-acetyltransferase 2 (NAT2) genotype and phenotype in patients with and without a history of hypersensitivity reactions to sulfonamides.
View Article and Find Full Text PDFThe acetylator phenotype and genotype of AIDS patients, with and without an acute illness, was compared with that of healthy control subjects (30 per group). Two probe drugs, caffeine and dapsone, were used to determine the phenotype in the acutely ill cohort. Polymerase chain reaction amplification and restriction fragment length polymorphism analysis served to distinguish between the 26 known NAT2 alleles and the 21 most common NAT1 alleles.
View Article and Find Full Text PDFHypersensitivity (HS) reactions to sulfonamides and sulfones continue to limit their use in human immunodeficiency virus (HIV)-infected individuals. In vitro cytotoxicity of hydroxylamine metabolites toward peripheral blood mononuclear cells (PBMCs) has been proposed as a marker for these HS reactions. To test the validity of this in vitro system, we determined the selective susceptibility of PBMCs from HIV-infected patients to the cytotoxic effects of hydroxylamine metabolites of sulfamethoxazole (SMX) and dapsone (DDS).
View Article and Find Full Text PDF