Publications by authors named "M J Eshraghi"

In this study, for the first time, the optimization of applied pressure for achieving the one of the best tribological properties of diamond-like carbon (DLC) coating on graphite surface using plasma-enhanced chemical vapor deposition (PECVD) method was investigated. Raman spectroscopy and microscopy methods were used to characterize the applied coating. Additionally, the mechanical properties of the coating were investigated through nanoindentation testing.

View Article and Find Full Text PDF

Unlabelled: The article has been withdrawn at the request of the editor of the journal Reviews on Recent Clinical Trials. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.

View Article and Find Full Text PDF

Background: The medical profession is facing an excessive workload, which has led to the development of various Computer-Aided Diagnosis (CAD) systems as well as Mobile-Aid Diagnosis (MAD) systems. These technologies enhance the speed and accuracy of diagnoses, particularly in areas with limited resources or remote regions during the pandemic. The primary purpose of this research is to predict and diagnose COVID-19 infection from chest X-ray images by developing a mobile-friendly deep learning framework, which has the potential for deployment in portable devices such as mobile or tablet, especially in situations where the workload of radiology specialists may be high.

View Article and Find Full Text PDF

In the present paper, the interrelated aspects of additive manufacturing-microstructure-property in directed energy deposition of SS316L-IN718 multi-material were studied through numerical modeling and experimental evaluation. The printability concept and solidification principles were used for this purpose. The printability analysis showed that the SS316L section is more susceptible to composition change and lack of fusion, respectively due to the high equilibrium vapor pressure of manganese and the more efficient heat loss in the initial layers.

View Article and Find Full Text PDF

People with cervical spinal cord injury (SCI) are likely to experience chronic intermittent hypoxia while sleeping. The physiological effects of intermittent hypoxia on the respiratory system during spontaneous sleep in individuals with chronic cervical SCI are unknown. We hypothesized that individuals with cervical SCI would demonstrate higher short- and long-term ventilatory responses to acute intermittent hypoxia (AIH) exposure than individuals with thoracic SCI during sleep.

View Article and Find Full Text PDF