Publications by authors named "M J Dimino"

Given the prevalence of transfer activity, education stakeholders must understand how transfer may be associated with student outcomes. Such knowledge is critical, as the COVID-19 pandemic and economic downturn have impacted college enrollment and student transfer behavior. Relying on a sample of 6510 undergraduate students from BPS:12/17 data, we conducted analyses using multiple regression to examine the relationship between student transfer direction and two student outcomes: time to degree and cumulative loan debt.

View Article and Find Full Text PDF

Bovine hemoglobin (bHb) was purified from bovine red blood cells (bRBCs) via anion exchange chromatography preceded by dialysis. This is a fast and effective way to obtain bHb from bRBCs using Q Sepharose XL, a strong anion exchange resin. This resin had double the binding capacity for bHb compared to three other anion exchange resins that were studied in this work.

View Article and Find Full Text PDF

Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction.

View Article and Find Full Text PDF

Second generation hemoglobin-based O(2) carriers (HBOCs) are being developed with high O(2) affinity (low P(50)) in order to suppress vasoconstriction elicited by over-oxygenating tissues, a problem associated with low O(2) affinity first generation HBOCs. Our group has previously investigated the polymerization of hemoglobin (Hb) with dialdehydes as a strategy for engineering high O(2) affinity HBOCs. In this study, two novel reactive dialdehydes were synthesized by ring-opening 2-chloroethyl-beta-D-fructopyranoside (2-CEFP) and 1-o-octyl-beta-D-glucopyranoside (1-OGP) at the 1,2-diol position, respectively, to yield novel Hb polymerizing reagents.

View Article and Find Full Text PDF