Publications by authors named "M J Deutschmann"

The carbon-free chemical storage and release of renewable energy is an important task to drastically reduce CO emissions. The high specific energy density of iron and its recyclability makes it a promising storage material. Energy release by oxidation with air can be realized by the combustion of micron-sized iron powders in retro-fitted coal fired power plants and in fixed-bed reactors under milder conditions.

View Article and Find Full Text PDF

As technology advances and sensing devices improve, it is becoming more and more pertinent to ensure accurate positioning of these devices, especially within the human body. This task remains particularly difficult during manual, minimally invasive surgeries such as cystoscopies where only a monocular, endoscopic camera image is available and driven by hand. Tracking relies on optical localization methods, however, existing classical options do not function well in such a dynamic, non-rigid environment.

View Article and Find Full Text PDF

Background: Age-standardized mortality rates for metastatic colorectal cancer (mCRC) are highest among elderly patients. In current clinical guidelines, treatment recommendations for this patient population are based on a limited number of clinical trials.

Patients And Methods: In this monocentric, retrospective analysis we characterized patients aged ≥70 years undergoing systemic therapy for mCRC and overall survival (OS) was investigated.

View Article and Find Full Text PDF

306Three-dimensional (3D)-printed vascular models for cardiovascular surgery planning and endovascular procedure simulations often lack realistic biological tissues mimicking material properties, including flexibility or transparency, or both. Transparent silicone or silicone-like vascular models were not available for end-user 3D printers and had to be fabricated using complex and cost-intensive workarounds. This limitation has now been overcome by novel liquid resins with biological tissue properties.

View Article and Find Full Text PDF

The combustion of metal fuels as energy carriers in a closed-cycle carbon-free process is a promising approach for reducing CO emissions in the energy sector. For a possible large-scale implementation, the influence of process conditions on particle properties and vice versa has to be well understood. In this study, the influence of different fuel-air equivalence ratios on particle morphology, size and degree of oxidation in an iron-air model burner is investigated by means of small- and wide-angle X-ray scattering, laser diffraction analysis and electron microscopy.

View Article and Find Full Text PDF