Publications by authors named "M J Dayel"

Application of , and has been reported to improve the growth of multiple plant species. is a medicinal plant found in Saudi Arabia. Its leaves, flowers and fruit have been used as food.

View Article and Find Full Text PDF

Choanoflagellates are unicellular and colonial aquatic microeukaryotes that capture bacteria using an apical flagellum surrounded by a feeding collar composed of actin-filled microvilli. Flow produced by the apical flagellum drives prey bacteria to the feeding collar for phagocytosis. We report here on the cell biology of prey capture in rosette-shaped colonies and unicellular "thecate" or substrate attached cells from the choanoflagellate S.

View Article and Find Full Text PDF

The flagellated protozoan Salpingoeca rosetta is one of the closest relatives of multicellular animals. Unicellular S. rosetta can be induced to form multicellular colonies, but colonies swim more slowly than individual cells so the advantages conferred by colony formation are uncertain.

View Article and Find Full Text PDF

It has been posited that animal development evolved from pre-existing mechanisms for regulating cell differentiation in the single celled and colonial ancestors of animals. Although the progenitors of animals cannot be studied directly, insights into their cell biology may be gleaned from comparisons between animals and their closest living relatives, the choanoflagellates. We report here on the life history, cell differentiation and intercellular interactions in the colony-forming choanoflagellate Salpingoeca rosetta.

View Article and Find Full Text PDF

Little is known about how the first animals evolved from their single celled ancestors. Over 120 years ago, Haeckel proposed that animals evolved through "repeated self-division of [a] primary cell,"[1] an idea supported by the observation that all animals develop from a single cell (the zygote) through successive rounds of cell division [2]. Nonetheless, there are multiple alternative hypotheses [3], including the formal possibility that multicellularity in the progenitor of animals occurred through cell aggregation, with embryogenesis by cell division being secondarily derived.

View Article and Find Full Text PDF