Climate Change and Materials Criticality challenges are driving urgent responses from global governments. These global responses drive policy to achieve sustainable, resilient, clean solutions with Advanced Materials (AdMats) for industrial supply chains and economic prosperity. The research landscape comprising industry, academe, and government identified a critical path to accelerate the Green Transition far beyond slow conventional research through Digital Technologies that harness Artificial Intelligence, Smart Automation and High Performance Computing through Materials Acceleration Platforms, MAPs.
View Article and Find Full Text PDFAim: To compare the in vivo bone formation capacity of of biomaterials designed as bone substitutes with respect to iliac crest autograft, one based on carbonate hydroxiapatite and the other one on bioactive mesoporous glass.
Materials And Methods: Experimental study consisting on 14 adult female New Zeland rabbits where a critical defect was made in the rabbit radius bone. The sample was divided into four groups: defect without material, with iliac crest autograft, with carbonatehydroxyapatite scaffold, and with bioactive mesoporous glass scaffold.
Rev Esp Cir Ortop Traumatol
January 2023
Aim: Compare bone formation capacity in vivo of two types of biomaterials designed as bone substitutes with respect to iliac crest autograft, one based on carbonate hydroxyapatites and the other one on bioactive mesoporous glass.
Materials And Methods: Experimental study consisting on 14 adult female New Zeland rabbits where a critical defect was made in the rabbit radius bone. The sample was divided into four groups: defect without material, with iliac crest autograft, with carbonatehydroxyapatite support, and with bioactive mesoporous glass support.
Growing interest has recently been shown in Tepary beans () because they contain lectins and protease inhibitors that have been shown to have a specific cytotoxic effect on human cancer cells. Bean lectins offer protection against biotic and abiotic stress factors, so it is possible that mechanical foliar damage may increase lectin production. This study evaluates the effect of mechanical stress (foliar damage) on lectin and protease inhibitor content in Tepary beans.
View Article and Find Full Text PDF