In situ tissue engineering that uses resorbable synthetic heart valve scaffolds is an affordable and practical approach for heart valve replacement; therefore, it is attractive for clinical use. This study showed no consistent collagen organization in the predefined direction of electrospun scaffolds made from a resorbable supramolecular elastomer with random or circumferentially aligned fibers, after 12 months of implantation in sheep. These unexpected findings and the observed intervalvular variability highlight the need for a mechanistic understanding of the long-term in situ remodeling processes in large animal models to improve predictability of outcome toward robust and safe clinical application.
View Article and Find Full Text PDFtissue engineering is a technology in which non-cellular biomaterial scaffolds are implanted in order to induce local regeneration of replaced or damaged tissues. Degradable synthetic electrospun scaffolds are a versatile and promising class of biomaterials for various tissue engineering applications, such as cardiovascular replacements. Functional tissue regeneration depends on the balance between endogenous neo-tissue formation and scaffold degradation.
View Article and Find Full Text PDFBackground: Right ventricular outflow tract (RVOT) conduits used in children with congenital heart disease often degenerate rapidly or develop other complications, and they do not grow with the patient. This leads to multiple surgeries until adult-sized conduits can be implanted. We report experimental in vivo experience with an entirely synthetic absorbable graft, designed to be replaced by tissue in-vivo by host cells, in a process termed Endogenous Tissue Restoration (ETR), and to grow commensurate with somatic growth.
View Article and Find Full Text PDFObjective: To evaluate the safety and the short-term function of a novel pulmonary valved conduit (Xeltis Pulmonary Valved Conduit; XPV) up to 12 months in a sheep model.
Methods: XPV and Hancock bioprosthetic valved conduits (H, used as control) were implanted in adult sheep in the pulmonary artery position. Animals were killed at 2 months (n = 6 XPV), 6 months (n = 6 XPV and n = 3 H), and 12 months (n = 6 XPV) and examined histologically.
Aims: The Xeltis bioabsorbable pulmonary valved conduit (XPV), designed to guide functional restoration of patients' own tissue, is potentially more durable than current pulmonary bioprosthetic valves/valved conduits. The aim of this study was to assess the haemodynamic performance of the novel XPV implanted in an ovine model.
Methods And Results: The XPV was surgically implanted in adult sheep under general anaesthesia and cardiopulmonary bypass (XPV group, n=20).