Publications by authors named "M J Bromley"

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Purpose: The purpose of this work was to determine the comfort performance of a toric, monthly, silicon hydrogel CL (lehfilcon A; TOTAL30 for Astigmatism) over a long day of wear.

Methods: This was a 1-month, 3-visit, prospective, single-arm study. Adult, 18- to 45-year-old CL wearers with good vision who were minimally symptomatic (CLDEQ-8 scores ≤12) were enrolled.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a life-threatening complication in patients with severe COVID-19. Previously, acute respiratory distress syndrome in patients with COVID-19 has been associated with lung fungal dysbiosis, evidenced by reduced microbial diversity and colonization. Increased fungal burden in the lungs of critically ill COVID-19 patients is linked to prolonged mechanical ventilation and increased mortality.

View Article and Find Full Text PDF

The environmental use of azole fungicides has led to selective sweeps across multiple loci in the Aspergillus fumigatus genome causing the rapid global expansion of a genetically distinct cluster of resistant genotypes. Isolates within this cluster are also more likely to be resistant to agricultural antifungals with unrelated modes of action. Here we show that this cluster is not only multi-azole resistant but has increased propensity to develop resistance to next generation antifungals because of variants in the DNA mismatch repair system.

View Article and Find Full Text PDF

Germination is the fundamental process whereby fungi transition from the dormant and stress resistant spores into actively replicating cells such as hyphae. Germination is essential for fungal colonization of new environments and pathogenesis, yet this differentiation process remains relatively poorly understood. For filamentous fungi, the study of germination has been limited by the lack of high-throughput, temporal, low cost, and easy-to-use methods of quantifying germination.

View Article and Find Full Text PDF