Environ Microbiol Rep
December 2024
Haloarchaea, known for their resilience to environmental fluctuations, require a minimum salt concentration of 10% (w/v) for growth and can survive up to 35% (w/v) salinity. In biotechnology, these halophiles have diverse industrial applications. This study investigates the tolerance responses of nine haloarchaea: Haloferax mediterranei, Haloferax volcanii, Haloferax gibbonsii, Halorubrum californiense, Halorubrum litoreum, Natrinema pellirubrum, Natrinema altunense, Haloterrigena thermotolerans and Haloarcula sinaiiensis, under various stressful conditions.
View Article and Find Full Text PDFMicroorganisms
May 2024
Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium's oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological remediation techniques like biosorption, bioaccumulation, and biotransformation. The EU Directive (2018/850) mandates alternatives to landfilling or incineration for industrial textile waste management, highlighting the importance of environmentally conscious practices for leather products' end-of-life management, with composting being the most researched and viable option.
View Article and Find Full Text PDFHaloferax mediterranei, an extreme halophilic archaeon thriving in hypersaline environments, has acquired significant attention in biotechnological and biochemical research due to its remarkable ability to flourish in extreme salinity conditions. Transcription factors, essential in regulating diverse cellular processes, have become focal points in understanding its adaptability. This study delves into the role of the Lrp transcription factor, exploring its modulation of glnA, nasABC, and lrp gene promoters in vivo through β-galactosidase assays.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Haloarchaea, like many other microorganisms, have developed defense mechanisms such as universal stress proteins (USPs) to cope with environmental stresses affecting microbial growth. Despite the wide distribution of these proteins in Archaea, their biochemical characteristics still need to be discovered, and there needs to be more knowledge about them focusing on halophilic Archaea. Therefore, elucidating the role of USPs would provide valuable information to improve future biotechnological applications.
View Article and Find Full Text PDF