Publications by authors named "M J Bloemer"

In the context of electromagnetism and nonlinear optical interactions, damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [Phys. Lett.

View Article and Find Full Text PDF

Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.

View Article and Find Full Text PDF

We study second harmonic generation in a 2-D photonic crystal with the pump field tuned at the Dirac point of the structure. The simultaneous generation of both forward and backward phase-matched second harmonic is achieved by exploiting a peculiar regime in which the interacting waves have zero phase velocity in the lattice. This regime can be attained even when strong material dispersion is present and therefore lends itself well to be implemented in semiconductor-based frequency conversion devices.

View Article and Find Full Text PDF

Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR.

View Article and Find Full Text PDF

We investigate all-optical switching at the guided mode resonances originating near the Dirac point of a finite, 2-D photonic crystal consisting of a square lattice of dielectric columns possessing a cubic nonlinearity. The peculiar field localization properties of these Dirac-point guided mode resonances conspire to yield extremely low switching threshold at near-to-normal incidence for remarkably low filling factors of the nonlinear material.

View Article and Find Full Text PDF