Encoding logical qubits in bosonic modes provides a potentially hardware-efficient implementation of fault-tolerant quantum information processing. Here, we demonstrate high-fidelity and deterministic preparation of highly nonclassical bosonic states in the mechanical motion of a trapped ion. Our approach implements error-suppressing pulses through optimized dynamical modulation of laser-driven spin-motion interactions to generate the target state in a single step.
View Article and Find Full Text PDFAtom-interferometric quantum sensors could revolutionize navigation, civil engineering, and Earth observation. However, operation in real-world environments is challenging due to external interference, platform noise, and constraints on size, weight, and power. Here we experimentally demonstrate that tailored light pulses designed using robust control techniques mitigate significant error sources in an atom-interferometric accelerometer.
View Article and Find Full Text PDFSpectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computational cost, existing quantum approaches rely on combining signals from individual eigenstates, an approach whose cost grows exponentially with molecule size.
View Article and Find Full Text PDFConical intersections are ubiquitous in chemistry and physics, often governing processes such as light harvesting, vision, photocatalysis and chemical reactivity. They act as funnels between electronic states of molecules, allowing rapid and efficient relaxation during chemical dynamics. In addition, when a reaction path encircles a conical intersection, the molecular wavefunction experiences a geometric phase, which can affect the outcome of the reaction through quantum-mechanical interference.
View Article and Find Full Text PDFUltrafast chemical reactions are difficult to simulate because they involve entangled, many-body wavefunctions whose computational complexity grows rapidly with molecular size. In photochemistry, the breakdown of the Born-Oppenheimer approximation further complicates the problem by entangling nuclear and electronic degrees of freedom. Here, we show that analog quantum simulators can efficiently simulate molecular dynamics using commonly available bosonic modes to represent molecular vibrations.
View Article and Find Full Text PDF