Publications by authors named "M J Ball"

Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.

View Article and Find Full Text PDF

We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading.

View Article and Find Full Text PDF

Objectives: Evaluating invasion in non-mucinous adenocarcinoma (NMA) of the lung is crucial for accurate pT-staging. This study compares the World Health Organization (WHO) with a recently modified NMA classification.

Materials And Methods: A retrospective case-control study was conducted on small NMA pT1N0M0 cases with a 5-year follow-up.

View Article and Find Full Text PDF

The adoption of comprehensive genomic profiling in oncology has rapidly increased the demand for standardized tumor sample processing in diagnostic laboratories. Automation of DNA and RNA library preparation workflows offers the possibility to scale-up and standardize sample processing. We report on the clinical implementation of the automated TruSight Oncology 500 High-Throughput library preparation workflow from formalin-fixed, paraffin-embedded tumor samples using the Biomek i7 hybrid Workstation.

View Article and Find Full Text PDF

A new pre-clinical method for capturing breath samples from intubated mice is presented. This method significantly reduces background levels, allowing more accurate measurements of VOCs originating from the breath ("on-breath") as opposed to background contamination. The method was developed by integrating industry-standard volatile-capturing sorbent tubes with respiratory mechanics measurement equipment (flexiVent), resulting in a mouse breath sample that can be transported and analyzed by TD-GC-MS and other central lab technologies.

View Article and Find Full Text PDF