Publications by authors named "M J A Van Luyn"

Aims/hypothesis: The immunomodulatory capacity of adipose tissue-derived stromal cells (ASCs) is relevant for next-generation cell therapies that aim to reverse tissue dysfunction such as that caused by diabetes. Pericyte dropout from retinal capillaries underlies diabetic retinopathy and the subsequent aberrant angiogenesis.

Methods: We investigated the pericytic function of ASCs after intravitreal injection of ASCs in mice with retinopathy of prematurity as a model for clinical diabetic retinopathy.

View Article and Find Full Text PDF

Aims: Neointimal hyperplasia is a common feature of fibro-proliferative vascular disease and characterizes initial stages of atherosclerosis. Neointimal lesions mainly comprise smooth muscle-like cells. The presence of these lesions is related to local differences in shear stress.

View Article and Find Full Text PDF

Adipose derived stromal cells (ADSC) are relevant therapeutic agents to treat myocardial infarction (MI) in clinical trials. Soluble factors secreted by ADSC, such as growth factors and cytokines, suppress inflammation and apoptosis while promoting angiogenesis and the proliferation of cardiomyocytes (CM). Moreover, ADSC synthesize extracellular matrix (ECM) components into the intercellular space which might contribute to their therapeutic capacity.

View Article and Find Full Text PDF

Form-stable resorbable networks are prepared by gamma irradiating trimethylene carbonate (TMC)- and ε-caprolactone (CL)-based (co)polymer films. To evaluate their suitability for biomedical applications, their physical properties and erosion behavior are investigated. Homopolymer and copolymer networks that are amorphous at room temperature are flexible and rubbery with elastic moduli ranging from 1.

View Article and Find Full Text PDF

An array of different types of hyaluronic acid (HA)- and collagen-based products is available for filling soft-tissue defects. A major drawback of the current soft-tissue fillers is their inability to induce cell infiltration and new tissue formation. Our aim is to develop novel biodegradable injectable gels which induce soft tissue regeneration, initially resulting in integration and finally replacement of the gel with new autologous tissue.

View Article and Find Full Text PDF