Publications by authors named "M Iu Volkova"

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway.

View Article and Find Full Text PDF

The use of mesenchymal stromal cells (MSCs) for treating chronic inflammatory disorders, wounds, and ischemia-reperfusion injuries has shown improved healing efficacy. However, the poor survival rate of transplanted cells due to oxidative stress in injured or inflamed tissue remains a significant concern for MSC-based therapies. In this study, we developed a new approach to protect MSCs from oxidative stress, thereby improving their survival in a wound microenvironment and enhancing their therapeutic effect.

View Article and Find Full Text PDF

This work presents the synthesis of novel copper oxide-multiwalled carbon nanotube (CuO-MWCNT) hybrid nanostructured composites and a systematic study of their thermoelectric performance at near-room temperatures as a function of MWCNT wt% in the composite. The CuO-MWCNT hybrid nanostructured composites were synthesized by thermal oxidation of a thin metallic Cu layer pre-deposited on the MWCNT network. This resulted in the complete incorporation of MWCNTs in the nanostructured CuO matrix.

View Article and Find Full Text PDF

This work is devoted to the development of epoxy-encapsulated zinc oxide-multiwalled carbon nanotubes (ZnO-MWCNT) hybrid nanostructured composites and the investigation of their thermoelectric performance in relation to the content of MWCNTs in the composite. For the preparation of nanocomposites, self-assembling Zn nanostructured networks were coated with a layer of dispersed MWCNTs and subjected to thermal oxidation. The resulting ZnO-MWCNT hybrid nanostructured networks were encapsulated in commercially available epoxy adhesive.

View Article and Find Full Text PDF

The near-room temperature thermoelectric properties of self-assembling ZnO nanowire networks before and after encapsulation in nonconductive polymers are studied. ZnO nanowire networks were synthesized via a two-step fabrication technique involving the deposition of metallic Zn networks by thermal evaporation, followed by thermal oxidation. Synthesized ZnO nanowire networks were encapsulated in polyvinyl alcohol (PVA) or commercially available epoxy adhesive.

View Article and Find Full Text PDF