Traumatic brain injury (TBI) ultimately leads to a reduction in the cerebral metabolic rate for oxygen due to ischemia. Previously, we showed that 2 ppm i.v.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a consequence of complex interactions of age-related neurodegeneration and vascular-associated pathologies, affecting more than 44 million people worldwide. For the last decade, it has been suggested that chronic brain hypoperfusion and consequent hypoxia play a direct role in the pathogenesis of AD. However, current treatments of AD have not focused on restoring or improving microvascular perfusion.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a chronic metabolic disease characterised by hyperglycaemia and glucose intolerance caused by impaired insulin action and/or defective insulin secretion. Long-term hyperglycaemia leads to various structural and functional microvascular changes within multiple tissues, including the brain, which involves blood-brain barrier alteration, inflammation and neuronal dysfunction. We have shown previously that drag-reducing polymers (DRP) improve microcirculation and tissue oxygen supply, thereby reducing neurologic impairment in different rat models of brain injury.
View Article and Find Full Text PDFDrag-reducing polymers (DRPs) are nontoxic water-soluble blood additives that have been shown to beneficially alter hemodynamics when delivered intravenously in nanomolar concentrations. This study examines the ability of DRPs to alter the traffic of mixtures of normal and less-deformable red blood cells (RBCs) through branched microchannels and is intended to support and expand upon previous experiments within straight capillary tubes to promote DRPs for future clinical use. Branched polydimethylsiloxane microchannels were perfused with a mixture of normal bovine RBCs also containing heat-treated less-deformable RBCs at a hematocrit of 30% with 10 ppm of the DRP poly(ethylene oxide) (MW 4M Da).
View Article and Find Full Text PDFHemorrhagic shock (HS) is a severe complication of traumatic brain injury (TBI) that doubles mortality due to severely compromised microvascular cerebral blood flow (mvCBF) and oxygen delivery reduction, as a result of hypotension. Volume expansion with resuscitation fluids (RF) for HS does not improve microvascular CBF (mvCBF); moreover, it aggravates brain edema. We showed that the addition of drag-reducing polymers (DRP) to crystalloid RF (lactated Ringer's) significantly improves mvCBF, oxygen supply, and neuronal survival in rats suffering TBI+HS.
View Article and Find Full Text PDF