Publications by authors named "M Iu Fadeev"

Producing hydrogen through water splitting often faces challenges of overpotential, stability, and expensive catalysts, which limit its efficiency and hinder the advancement of hydrogen production technologies. Nickel foam and nickel meshes have emerged as promising materials for electrolyzer electrodes due to their high surface area and the ability to produce electrolyzers with a very small gap between the anode and cathode. This study presents a simple method for coating Ni-based electrodes with a chiral Ni-Au film, using electroplating, thus enhancing its efficiency dramatically.

View Article and Find Full Text PDF

Nuclear imaging modalities can detect somatostatin receptor type 2 (SSTR2) in vivo as a potential marker of local post-MI inflammation. SSTR2+ macrophages are thought to be the main substrate for SSTR-targeted radioimaging. However, the distribution of SSTR2+ cells in the MI patients' myocardium is unknown.

View Article and Find Full Text PDF

Thin HgCdTe/CdHgTe quantum wells (QWs) grown on alternative GaAs (013) substrates have been recently proposed as a material for coherent emitters in the mid-IR region. In this work, we develop a technological process for the fabrication of ridge microresonators in waveguide heterostructures with multiple HgCdTe QWs via photolithography and ion etching. We process two samples with different ridge heights and analyze their emission spectra measured under optical excitation.

View Article and Find Full Text PDF

The assembly of enzyme [glucose oxidase (GOx)]-loaded stimuli-responsive DNA-based hydrogels on electrode surfaces, and the triggered control over the stiffness of the hydrogels, provides a means to switch the bioelectrocatalytic functions of the hydrogels. One system includes the assembly of GOx-loaded, pH-responsive, hydrogel matrices cross-linked by two cooperative nucleic acid motives comprising permanent duplex nucleic acids and "caged" i-motif pH-responsive duplexes. Bioelectrocatalyzed oxidation of glucose leads to the formation of gluconic acid that acidifies the hydrogel resulting in the separation of the i-motif constituents and lowering the hydrogel stiffness.

View Article and Find Full Text PDF

HgCdTe-based heterostructures with quantum wells (QWs) are a promising material for semiconductor lasers in the atmospheric transparency window (3-5 μm) thanks to the possibility of suppressing Auger recombination due to the no-parabolic law of carrier dispersion. In this work, we analyze the thresholds of stimulated emission (SE) under optical pumping from heterostructures with a different number of QWs in the active region of the structure. Total losses in structures are determined from the comparison of thresholds for the different number of QWs in the active region.

View Article and Find Full Text PDF