Down syndrome (DS), caused by the triplication of chromosome 21 (T21), is a prevalent genetic disorder with a higher incidence of obesity. Traditional approaches have struggled to differentiate T21-specific molecular dysregulation from general obesity-related processes. This study introduces the omni-PLIER framework, combining the Pathway-Level Information ExtractoR (PLIER) with the omnigenic model, to uncover molecular mechanisms underlying obesity in DS.
View Article and Find Full Text PDFThe growing availability of genome-wide association studies (GWAS) and large-scale biobanks provides an unprecedented opportunity to explore the genetic basis of complex traits and diseases. However, with this vast amount of data comes the challenge of interpreting numerous associations across thousands of traits, especially given the high polygenicity and pleiotropy underlying complex phenotypes. Traditional clustering methods, which identify global patterns in data, lack the resolution to capture overlapping associations relevant to subsets of traits or genes.
View Article and Find Full Text PDFIdentifying meaningful patterns in data is crucial for understanding complex biological processes, particularly in transcriptomics, where genes with correlated expression often share functions or contribute to disease mechanisms. Traditional correlation coefficients, which primarily capture linear relationships, may overlook important nonlinear patterns. We introduce the clustermatch correlation coefficient (CCC), a not-only-linear coefficient that utilizes clustering to efficiently detect both linear and nonlinear associations.
View Article and Find Full Text PDF