The state of aggregation at room temperature of -butanol (TBH) and perfluoro -butanol (TBF) liquid mixtures is assessed by vibrational spectroscopy (Raman and infrared) and X-ray diffraction and analyzed using density functional theory (DFT) and molecular dynamics (MD) simulations. It is shown that larger clusters (mostly tetramers) of TBH are destroyed upon dilution with TBF. Small oligomers, monomers, and mainly heterodimers are present at the equimolar concentration.
View Article and Find Full Text PDFThe reaction mechanisms of CO2 and its isoelectronic molecules OCS and CS2 dissolved in N-butyl-N-methylpyrrolidinium acetate and in 1-butyl-3-methylimidazolium acetate were investigated by DFT calculations in "gas phase". The analysis of predicted multistep pathways allowed calculating energies of reaction and energy barriers of the processes. The major role played by the acetate anion in the degradation of the solutes CS2 and OCS as well as in the capture of OCS and CO2 by the imidazolium ring is highlighted.
View Article and Find Full Text PDFNMR spectroscopy ((1)H, (13)C, (15)N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS(-)), CO2, OCS, and trithiocarbonate (CS3 (2-)). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions.
View Article and Find Full Text PDFRaman and NMR spectroscopies show that CS2 and OCS react spontaneously with 1-butyl-3-methylimidazolium acetate [C4mim] [Ac] in the liquid phase. The formation of [C4mim] CO2, [C4mim] COS, CH3COS(-) and gaseous CO2 and OCS in both systems demonstrates that the anion plays an unexpected role not observed in the CO2-[C4mim] [Ac] reaction.
View Article and Find Full Text PDFThe dense phase of CO2-CS2 mixtures has been analysed by Raman spectroscopy as a function of the CO2 concentration (0.02-0.95 mole fractions) by varying the pressure (0.
View Article and Find Full Text PDF