Publications by authors named "M Irnaten"

Article Synopsis
  • Lamina cribrosa (LC) cells are important in the development of glaucoma-related extracellular matrix remodeling and fibrosis, showing characteristics similar to myofibroblasts.
  • In glaucomatous LC cells, the tumor suppressor protein p53 is decreased and the MDM2 protein is increased, indicating a dysregulation in the p53-MDM2 pathway.
  • Treatment with the p53-MDM2 inhibitor RG-7112 led to an increase in p53 and a decrease in MDM2, enhancing apoptosis and reducing cell proliferation in glaucomatous cells.
View Article and Find Full Text PDF

Glaucoma, one of the leading causes of irreversible blindness, is a common progressive optic neuropathy characterised by visual field defects and structural changes to the optic nerve head (ONH). There is extracellular matrix (ECM) accumulation and fibrosis of the lamina cribrosa (LC) in the ONH, and consequently increased tissue stiffness of the LC connective tissue. Integrins are cell surface proteins that provide the key molecular link connecting cells to the ECM and serve as bidirectional sensors transmitting signals between cells and their environment to promote cell adhesion, proliferation, and remodelling of the ECM.

View Article and Find Full Text PDF

Glaucoma, a leading cause of blindness, is a multifactorial condition that leads to progressive loss of retinal ganglion cells (RGCs) and vision. Therapeutic interventions based on reducing ocular hypertension are not always successful. Emerging features of glaucoma include mitochondrial dysfunction and oxidative stress.

View Article and Find Full Text PDF

Optic nerve head (ONH) cupping is a clinical feature of glaucoma associated with extracellular matrix (ECM) remodelling and lamina cribrosa (LC) fibrosis. Peripapillary atrophy (PPA) occurs commonly in glaucoma, and is characterised by the loss of retinal pigment epithelium (RPE) adjacent to the ONH. Under pro-fibrotic conditions, epithelial cells throughout the body can differentiate into fibroblast-like cells through epithelial-to-mesenchymal transition (EMT) and contribute to ECM fibrosis.

View Article and Find Full Text PDF

Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis.

View Article and Find Full Text PDF