In spite of the outstanding role of tobacco smoking in human carcinogenesis, it is difficult to reproduce its effects in experimental animals. Based on the knowledge that a variety of mechanisms account for a higher susceptibility to carcinogens early in life, we have developed a murine model in which mainstream cigarette smoke becomes convincingly carcinogenic. The standard model involves exposure to smoke for 4 months, starting after birth, followed by an additional 3-4 months in filtered air.
View Article and Find Full Text PDFWe recently showed that nonsteroidal anti-inflammatory drugs (NSAIDs) are able to inhibit the lung tumors induced by cigarette smoke, either mainstream (MCS) or environmental (ECS), in female mice. We used subsets of mice to analyze the expression of 1135 microRNAs in both lung and blood serum, as related to the whole-body exposure to smoke and/or oral administration of either aspirin or naproxen. In a first study, we evaluated early microRNA alterations in A/J mice exposed to ECS for 10 weeks, starting at birth, and/or treated with NSAIDs for 6 weeks, starting after weaning.
View Article and Find Full Text PDFCigarette smoke (CS) and ethanol (EtOH) are known to synergize in the causation of cancers of the upper aerodigestive tract and of the liver. Little is known about possible interactions between these agents in other organs. These premises prompted us to evaluate the clastogenic effects resulting from the inhalation for 3 weeks of mainstream CS and oral administration of EtOH, which were tested either individually or in combination in cells of adult BDF1 mice and their fetuses.
View Article and Find Full Text PDFBoth ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure.
View Article and Find Full Text PDFCigarette smoke (CS) is known to dysregulate microRNA expression profiles in the lungs of mice, rats, and humans, thereby modulating several pathways involved in lung carcinogenesis and other CS-related diseases. We designed a study aimed at evaluating (a) the expression of 1135 microRNAs in the lung of Swiss H mice exposed to mainstream CS during the first 4 months of life and thereafter kept in filtered air for an additional 3.5 months, (b) the relationship between lung microRNA profiles and histopathological alterations in the lung, (c) intergender differences in microRNA expression, and (d) the comparison with microRNA profiles in blood serum.
View Article and Find Full Text PDF