Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.
View Article and Find Full Text PDFThe growing demand of novel hybrid organic/inorganic systems with exciting properties has contributed to an increasing need for simplifying production strategies. Here, we report a simple method to obtain controlled three-dimensional hybrid architectures, in particular hybrid supracolloids (hSC), formed by gold nanoparticles and a double hydrophilic block copolymer, specifically the poly(acrylic acid)-block-poly(N-vinyl-2-pyrrolidone) (PAA-b-PVP), directly in aqueous medium. The ubiquitous pH-sensitive poly(acrylic acid) (PAA) block initiates the assembly through pH changes, while the poly(N-vinyl-2-pyrrolidone) block assures the close affinity with the AuNPs.
View Article and Find Full Text PDFObjective: This systematic review aimed to describe and evaluate the caries patterns among the 21st century preschool children globally.
Method: Six electronic databases (Pubmed, Embase, Medline, Web of Science, EBSCOhost, and Scopus) were searched using predetermined terms. Dual independent screening of all retrieved abstracts was performed to identify studies conducted after year 2000 and the caries pattern among preschool children was investigated.
Magnetic resonance imaging (MRI) is the method of choice for noninvasive studies of micrometer-scale structures in biological tissues via their effects on the time- and frequency-dependent (restricted) and anisotropic self-diffusion of water. While new designs of time-dependent magnetic field gradient waveforms have enabled disambiguation between different aspects of translational motion that are convolved in traditional MRI methods relying on single pairs of field gradient pulses, data analysis for complex heterogeneous materials remains a challenge. Here, we propose and demonstrate nonparametric distributions of tensor-valued Lorentzian diffusion spectra, or "D(ω) distributions," as a general representation with sufficient flexibility to describe the MRI signal response from a wide range of model systems and biological tissues investigated with modulated gradient waveforms separating and correlating the effects of restricted and anisotropic diffusion.
View Article and Find Full Text PDFLanthanide-based macrocycles are successfully incorporated into hybrid polyionic complexes, formed by adding a mixture of zirconium ions to a solution of a double-hydrophilic block copolymer. The resulting nanoobjects with an average radius of approximately 10-15 nm present good colloidal and chemical stability in physiological media even in the presence of competing ions such as phosphate or calcium ions. The final optical and magnetic properties of these objects benefit from both their colloidal nature and the specific properties of the complexes.
View Article and Find Full Text PDF