In the present study, we investigated in vitro, the role of artesunate (ATS) with comparable potency to oxaliplatin (OXP) in sensitizing tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) resistant HepG2 cells towards apoptosis. ATS in consistency with OXP was found to reverse TRAIL resistant HepG2 cells towards TRAIL mediated apoptosis by enhancing caspase-3 and cleavage of PARP. Additionally, ATS also suppressed the nuclear translocation of activated signal transducers and activators of transcription 3 (STAT3) thereby sensitizing the HepG2 cells towards only death receptor 4 (DR4) mediated apoptosis.
View Article and Find Full Text PDFActivation of the IL-6 mediated JAK-STAT (Janus associated kinase-signal transducer and activator of transcription) oncogenic signalling plays a major role in hepatocellular carcinoma pathogenesis. The aim of this study is to assess the anti-tumour, anti-proliferative and apoptotic potential of artesunate and its capacity to modulate JAK-STAT pathway in a nitrosodiethylamine mediated experimental hepatocellular carcinoma model. Administration of nitrosodiethylamine (200mg/kg body weight by i.
View Article and Find Full Text PDFViper venom hyaluronidase (VV-HYA) inhibitors have long been used as therapeutic agents for arresting the local and systemic effects caused during its envenomation. Henceforth, to understand its structural features and also to identify the best potential inhibitor against it the present computational study was undertaken. Structure-based homology modeling of VV-HYA followed by its docking and free energy-based ranking analysis of ligand, the MD simulations of the lead complex was also performed.
View Article and Find Full Text PDFBackground: Aberrant signal transducer and activator of transcription 3 (STAT-3) molecular signaling elicit hepatocellular carcinoma (HCC) in humans. Therefore, targeting STAT-3 is considered as an attractive option towards suppression of HCC in humans.
Objective: Our objective is to identify a potential small molecule inhibitor that can specifically target STAT-3 and suppress HCC.
Transmembrane protease serine 4 is a well known cell surface protease facilitating the extracellular matrix degradation and epithelial mesenchymal transition in hepatocellular carcinoma. Henceforth targeting transmembrane protease serine 4 is strongly believed to provide therapeutic intervention against hepatocellular carcinoma. Owing to lack of crystal structure for human transmembrane protease serine 4, we predicted its three dimensional structure for the first time in this study.
View Article and Find Full Text PDF