The origin of the proteinacious matrix of the inner ear stones (otoliths) of vertebrates has not yet been clarified. Using the backstroke mutant (bks) of the zebrafish Danio rerio, which is characterized by a complete lack of otoliths, we searched for possibly missing or aberrant structural components within the macular epithelia of the inner ears of embryos on the ultrastructural level. Numerous multilamellar bodies (MLBs) were found.
View Article and Find Full Text PDFUnusually large mitochondria are a rather scarce feature in normal biological tissue and string-like giant mitochondria have hitherto not been reported in animals. Investigating the role of inner ear ionocytes for otolith growth, large ionocytes of the saccular epithelium of the cichlid fish Oreochromis mossambicus were analyzed by imaging of thick sections with energy-filtering transmission electron microscopy. We report here that ionocytes do not contain numerous small-sized mitochondria as has been suggested earlier but rather few, extremely elongated megamitochondria.
View Article and Find Full Text PDFInner ear otolith formation in fish is supposed to be performed by the molecular release of proteinacious precursor material from the sensory epithelia, followed by an undirected and diffuse precipitation of calcium carbonate (which is mainly responsible for the functionally important weight of otoliths). The pathway of calcium into the endolymph, however, still remains obscure. Therefore, the presence of calcium within the utricle of larval cichlid fish Oreochromis mossambicus was analyzed by means of energy filtering transmission electron microscopy (EFTEM).
View Article and Find Full Text PDFCell Tissue Res
September 2004
The presence of calcium within the utricle of larval cichlid fish Oreochromis mossambicus was analysed by means of energy-filtering transmission electron microscopy. Electron-spectroscopic imaging and electron energy loss spectra revealed discrete calcium precipitations that were more numerous in the proximal endolymph than in the distal endolymph, clearly indicating a decreasing proximo-distal gradient. This decreasing proximo-distal gradient was also present within the proximal endolymph between the sensory epithelium and the otolith.
View Article and Find Full Text PDFSynapse counting was undertaken by conventional electron microscopy in primary vestibular integration centers (i.e., Nucleus descendens, Nd, and Nucleus magnocellularis, Nm, of the brainstem Area octavolateralis) and in the diencephalic visual Nucleus corticalis (Nc) of spaceflown neonate swordtail fish Xiphophorus helleri as well as in 1 g control siblings.
View Article and Find Full Text PDF