Background: Padsevonil is an antiseizure medication candidate intended to benefit patients with drug-resistant epilepsy. Our investigations aimed at characterizing pharmacokinetics and drug-drug interaction (DDI) profile of padsevonil.
Research Design And Methods: An overview of preclinical and clinical pharmacology studies conducted during padsevonil development is provided.
Volumetric absorptive microsampling (VAMS) techniques have gained popularity these last years as innovative tool for collection of blood pharmacokinetic (PK) samples in clinical trials as they offer many advantages over dried blood spot and conventional venous blood sampling. The use of Mitra, a blood collection device based on volumetric absorptive microsampling (VAMS) technology, was implemented during clinical development of padsevonil (PSL), an anti-seizure medication (ASM) candidate. The present study describes the approach used to bridge plasma (obtained from conventional venous blood sampling) and blood exposures (obtained with Mitra) to support the use of Mitra as sole blood PK sampling method in clinical trials.
View Article and Find Full Text PDFAlzheimers Dement
October 2023
Evaluating potential therapies for Alzheimer's disease (AD) depends on use of biomarkers for appropriate subject selection and monitoring disease progression. Biomarkers that predict onset of clinical symptoms are particularly important for AD because they enable intervention before irreversible neurodegeneration occurs. The amyloid-β-tau-neurodegeneration (ATN) classification system is currently used as a biological staging model for AD and is based on three classes of biomarkers evaluating amyloid-β (Aβ), tau pathology and neurodegeneration or neuronal injury.
View Article and Find Full Text PDF