Publications by authors named "M I Taktakishvili"

The aim of this work was to investigate the effectiveness of a high voltage multi-spark electric discharge, with pulse energy of 1 Joule, in killing microorganisms in wastewater. Wastewater from primary treated effluent arising from domestic and industrial sources was abstracted for continuous pulsed discharge disinfection. The wastewater contained a large mixed population of microorganisms (approximately 10(7) CFU ml(-1) [10(9) CFU 100 ml(-1)] total aerobic heterotrophic bacteria) including vegetative cells and spores.

View Article and Find Full Text PDF

Aims: To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms.

Methods And Results: Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1).

View Article and Find Full Text PDF

A new phosphorylating agent for nucleosides, 2-O-(4,4'-dimethoxytrityl) ethylsulfonylethan-2'-yl-phosphate (1), has been developed by us. In the many examples studied by us, phosphorylation yields were found to be very high (about 90%). The procedure appears to be remarkably general and can be utilized for the phosphorylation of many biomolecules.

View Article and Find Full Text PDF

Integration of HIV viral DNA into human chromosomal DNA catalyzed by HIV integrase is essential for the replication of HIV. Discovery of novel inhibitors of HIV integrase is of considerable significance in approaches to the development of therapeutic agents against AIDS. We have synthesized a new dinucleotide 1 with an internucleotide phosphate bond that is unusually resistant to exonucleases.

View Article and Find Full Text PDF

The viral enzyme, HIV integrase, is involved in the integration of viral DNA into host cell DNA. In the quest for a small nucleotide system with nuclease stability of the internucleotide phosphate bond and critical structural features for recognition and inhibition of HIV-1 integrase, we have discovered a conceptually novel dinucleotide, pIsodApdC, which is a potent inhibitor of this key viral enzyme.

View Article and Find Full Text PDF