Lampbrush chromosomes, with their unusually high rate of nascent RNA synthesis, provide a valuable model for studying mechanisms of global transcriptome up-regulation. Here, we obtained a whole-genomic profile of transcription along the entire length of all lampbrush chromosomes in the chicken karyotype. With nuclear RNA-seq, we obtained information about a wider set of transcripts, including long non-coding RNAs retained in the nucleus and stable intronic sequence RNAs.
View Article and Find Full Text PDFBackground: As genomes of many eukaryotic species, especially plants, are large and complex, their de novo sequencing and assembly is still a difficult task despite progress in sequencing technologies. An alternative to genome assembly is the assembly of transcriptome, the set of RNA products of the expressed genes. While a bunch of de novo transcriptome assemblers exists, the challenges of transcriptomes (the existence of isoforms, the uneven expression levels across genes) complicates the generation of high-quality assemblies suitable for downstream analyses.
View Article and Find Full Text PDFTranscriptomic and proteomic analysis were performed on 72 h biofilms of the acneic strain and planktonic cultures in the presence of epinephrine. Epinephrine predominantly downregulated genes associated with various transporter proteins. No correlation was found between proteomic and transcriptomic profiles.
View Article and Find Full Text PDFHeracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H.
View Article and Find Full Text PDFBackground: Despite constantly improving genome sequencing methods, error-free eukaryotic genome assembly has not yet been achieved. Among other kinds of problems of eukaryotic genome assembly are so-called "haplotypic duplications", which may manifest themselves as cases of alleles being mistakenly assembled as paralogues. Haplotypic duplications are dangerous because they create illusions of gene family expansions and, thus, may lead scientists to incorrect conclusions about genome evolution and functioning.
View Article and Find Full Text PDF