Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells.
View Article and Find Full Text PDFSerine β-lactamase TEM-1 is the first β-lactamase discovered and is still common in Gram-negative pathogens resistant to β-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors.
View Article and Find Full Text PDFIdentifying high-affinity antibodies in human serum is challenging due to extremely low number of circulating B cells specific to the desired antigens. Delays caused by a lack of information on the immunogenic proteins of viral origin hamper the development of therapeutic antibodies. We propose an efficient approach allowing for enrichment of high-affinity antibodies against pathogen proteins with simultaneous epitope mapping, even in the absence of structural information about the pathogenic immunogens.
View Article and Find Full Text PDFDespite the mechanical and physical properties of polyurethane foams (PUF), their application is still hindered by high inflammability. The elaboration of effective, low-cost, and environmentally friendly fire retardants remains a pressing issue that must be addressed. This work aims to show the feasibility of the successful application of natural nanomaterials, such as halloysite nanotubes and nanocellulose, as promising additives to the commercial halogen-free, fire-retardant triphenyl phosphate (TPP) to enhance the flame retardance of open-cell polyurethane foams.
View Article and Find Full Text PDFMultiplex analysis as an immunochip-in-a well format for simultaneous detection of post-vaccinal antibodies to three poultry infections (Newcastle disease, infectious bronchitis and bursal disease) in one chicken sera was developed. The immunochip had a microarray format printed on the bottom of a standard microtiter plate well and consisted of 36 microspots (d = 400 μm each) with three lines of viral antigens absorbed in a gradient of five decreasing concentrations. Optimization of assay conditions revealed the necessity of careful choice of the reaction buffer due to the high tendency of chicken IgY to exhibit unspecific binding.
View Article and Find Full Text PDF