Publications by authors named "M I Mosevitsky"

Earlier it was shown that a group of extracellular low-specific metallopeptidases is present in the mammalian brain Kropotova and Mosevitsky (2016) [1]. These enzymes are weakly connected to the axonal ends of neurons. They were named Neuron bound Extracellular MetalloPeptidases (NEMP).

View Article and Find Full Text PDF

Well-known theories of aging suggest that a certain metabolic defect negatively affects vital activity of the cell, be it oxidative stress, the accumulation of lesions in DNA, the exhaustion of telomeres, or distorted epigenetic processes. The theory of aging considered in the review postulates that an accumulation of progerin on the inner side of the nuclear envelope underlies the above defects. Progerin is a defective precursor of the lamin A nuclear matrix protein in which the C-terminal cysteine, which is removed normally, is retained and modified with a hydrophobic oligoisoprene chain.

View Article and Find Full Text PDF

The main obstacle to the use of many therapeutic peptides in practice is their rapid destruction by extracellular peptidases. Earlier we have found that active in the extracellular medium of mammalian brain exopeptidases are unable to break the bonds formed by β-alanine. We have designed several modified forms of opioid peptide enkephalin (Tyr-Gly-Gly-Phe-Met; Enk) with end βAla: ModEnk1 (βAla-Tyr-Gly-Gly-Phe-Met-βAla), ModEnk2 (βAla-Tyr-Gly-Gly-Phe-NH), ModEnk3 (βAla-Tyr-Gly-Phe-NH).

View Article and Find Full Text PDF

We have found that isolated from mammalian brain (rat, bovine) axonal endings (synaptosomes) degrade peptides of different composition. With the use of low concentration of non ionic detergent Triton X-100 (0.05-0.

View Article and Find Full Text PDF

Protein BASP1 was discovered in brains of mammals and birds. In presynaptic area of synapses, BASP1 is attached to plasma membrane owing to N-terminal myristoylation as well as to the positively charged "effecter domain". BASP1 interactions with other proteins as well as with lipids contribute to membrane traffic, axon outgrowth and synaptic plasticity.

View Article and Find Full Text PDF