Publications by authors named "M I Harhun"

Background: Purinergic P2X receptors in vascular smooth muscle cells (VSMCs) play an important role in physiological stimulatory responses to the extracellularly released ATP. The aim of this work was to identify molecular P2X receptor subunits in VSMCs isolated from rat anterior, posterior and basilar arteries using a number of contemporary laboratory techniques.

Methods: P2X mediated ionic currents were recorded using amphotericin B perforated patch clamp method.

View Article and Find Full Text PDF

Vasomotion is the rhythmical changes in vascular tone of various blood vessels. It was proposed that in rabbit portal vein (RPV) the spontaneous contractile activity is driven by vascular interstitial cells (VICs), since RPV VICs generate rhythmical changes in intracellular Ca(2+) concentration ([Ca(2+)]i) associated with membrane depolarisation in these cells. In this work, using confocal imaging in Fluo-3 loaded RPV VICs we studied if generation of rhythmical [Ca(2+)]i changes is affected when Ca(2+) handling by mitochondria is compromised.

View Article and Find Full Text PDF

Aims: P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension.

View Article and Find Full Text PDF

Background And Purpose: Current knowledge states that vasoconstrictor responses to ATP are mediated by rapidly desensitizing ligand-gated P2X1 receptors in vascular smooth muscle cells (VSMCs). However, ATP is implicated in contributing to pathological conditions involving sustained vasoconstrictor response such as cerebral vasospasm. The purpose of this study is to test the hypothesis that the stimulation of VSMC P2XR receptors (P2XRs) contributes to ATP-evoked sustained vasoconstrictions in rat middle cerebral arteries (RMCAs).

View Article and Find Full Text PDF

Background: ATP is one of the principal sympathetic neurotransmitters which contracts vascular smooth muscle cells (SMCs) via activation of ionotropic P2X receptors (P2XRs). We have recently demonstrated that contraction of the guinea pig small mesenteric arteries evoked by stimulation of P2XRs is sensitive to inhibitors of IP3 receptors (IP3Rs). Here we analyzed contribution of IP3Rs and ryanodine receptors (RyRs) to [Ca(2+)]i transients induced by P2XR agonist αβ-meATP (10 μM) in single SMCs from these vessels.

View Article and Find Full Text PDF