Publications by authors named "M I Goodwin"

Research on advanced biopreservation - technologies that include, for example, partial freezing, supercooling, and vitrification with nanoparticle infusion and laser rewarming - is proceeding at a rapid pace, potentially affecting many areas of medicine and the life sciences, food, agriculture, and environmental conservation. Given the breadth and depth of its medical, scientific, and corresponding social impacts, advanced biopreservation is poised to emerge as a disruptive technology with real benefits, but also ethical challenges and risks. Early engagement with potentially affected groups can help navigate possible societal barriers to adoption of this new technology and help ensure that emerging capabilities align with the needs, desires, and expectations of a broad range of interested parties.

View Article and Find Full Text PDF

Advanced biopreservation technologies using subzero approaches such as supercooling, partial freezing, and vitrification with reanimating techniques including nanoparticle infusion and laser rewarming are rapidly emerging as technologies with potential to radically disrupt biomedicine, research, aquaculture, and conservation. These technologies could pause biological time and facilitate large-scale banking of biomedical products including organs, tissues, and cell therapies.

View Article and Find Full Text PDF

Mode-locked lasers are of interest for applications such as biological imaging, nonlinear frequency conversion, and single-photon generation. In the infrared, chip-integrated mode-locked lasers have been demonstrated through integration of laser diodes with low-loss photonic circuits. However, additional challenges, such as a higher propagation loss and smaller alignment tolerances, have prevented the realization of such lasers in the visible range.

View Article and Find Full Text PDF

Mycobacterial species in nature are found in abundance in sphagnum peat bogs where they compete for nutrients with a variety of microorganisms including fungi. We screened a collection of fungi isolated from sphagnum bogs by co-culture with Mycobacterium tuberculosis (Mtb) to look for inducible expression of antitubercular agents and identified 5 fungi that produced cidal antitubercular agents upon exposure to live Mtb. Whole genome sequencing of these fungi followed by fungal RNAseq after Mtb exposure allowed us to identify biosynthetic gene clusters induced by co-culture.

View Article and Find Full Text PDF

Background: Individuals with sickle cell disease (SCD) experience poor clinical outcomes while transitioning from paediatric to adult care. Standards for SCD transition are needed. We established a Quality Improvement (QI) Collaborative that aimed to improve the quality of care for all young adults with SCD by establishing a standardised SCD transition process.

View Article and Find Full Text PDF