Publications by authors named "M I Canal"

Energy is required for growth as well as for multiple cellular processes. During evolution, plants developed regulatory mechanisms to adapt energy consumption to metabolic reserves and cellular needs. Reduced growth is often observed under stress, leading to a growth-stress trade-off that governs plant performance under different conditions.

View Article and Find Full Text PDF

RTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D.

View Article and Find Full Text PDF

Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.

View Article and Find Full Text PDF

Objective: To verify breathiness in the cisgender and transgender men and women's voices, compare values of acoustic and perceptual indicators of breathiness and fundamental frequency (f0) between groups, and compare them between the voices attributed as female and male.

Study Design: Cross sectional retrospective study.

Methods: The study was approved by the Research Ethics Committee (4,937,140).

View Article and Find Full Text PDF

Global warming is causing rapid changes in mean annual temperature and more severe drought periods. These are major contributors of forest dieback, which is becoming more frequent and widespread. In this work, we investigated how the transcriptome of Pinus radiata changed during initial heat stress response and acclimation.

View Article and Find Full Text PDF