Publications by authors named "M I Abramov"

Xeno nucleic acids (XNAs) are unnatural analogues of the natural nucleic acids in which the canonical ribose or deoxyribose rings are replaced with alternative sugars, congener structures or even open-ring configurations. The expanding repertoire of XNAs holds significant promise for diverse applications in molecular biology as well as diagnostics and therapeutics. Key advantages of XNAs over natural nucleic acids include their enhanced biostability, superior target affinity and (in some cases) catalytic activity.

View Article and Find Full Text PDF

Cardiac contractility modulation (CCM) is based on electrical stimulation of the heart without alteration of action potential and mechanical activation, the data on its fundamental molecular mechanisms are limited. Here we demonstrate clinical and physiological effect of 12 months CCM in 29 patients along with transcriptomic molecular data. Based on the CCM effect the patients were divided into two groups: responders ( = 13) and non-responders ( = 16).

View Article and Find Full Text PDF

Recent studies show that Alzheimer's disease (AD) has many common links with conditions associated with insulin resistance, including neuroinflammation, impaired insulin signaling, oxidative stress, mitochondrial dysfunction and metabolic syndrome. The authors conducted an electronic search for publications in the PubMed/MEDLINE and Google Scholar databases using the keywords "amyloid beta", "Alzheimer type-3-diabetes", "intranasal insulin", "metformin", "type 2 diabetes mellitus", "incretins" and "PPARy agonists». A systematic literature search was conducted among studies published between 2005 and 2022.

View Article and Find Full Text PDF

We explored the toxicity and mutagenicity of a wide range of xenobiotic nucleoside triphosphates to an strain equipped with a nucleoside triphosphate transporter. This bacterial test provides a tool to evaluate and guide the synthesis of nucleotides for applications such as the propagation of non-natural genetic information or the selection of potential drugs.

View Article and Find Full Text PDF

Several efforts are currently directed at the creation and cellular implementation of alternative genetic systems composed of pairing components that are orthogonal to the natural dA/dT and dG/dC base pairs. In an alternative approach, Watson-Crick-type pairing is conserved, but one or all of the four letters of the A, C, G, and T alphabet are substituted by modified components. Thus, all four nucleobases were altered to create halogenated deazanucleic acid (DZA): dA was replaced by 7-deaza-2'-deoxyadenosine (dzA), dG by 7-deaza-2'-deoxyguanosine (dzG), dC by 5-fluoro-2'-deoxycytidine (FdC), and dT by 5-chloro-2'-deoxyuridine (CldU).

View Article and Find Full Text PDF