Purpose: The ability to generate natural killer (NK) cells from induced pluripotent stem cells (iPSCs) has given rise to new possibilities for the large-scale production of homogeneous immunotherapeutic cellular products and opened new avenues towards the creation of "off-the-shelf" cancer immunotherapies. However, the differentiation of NK cells from iPSCs remains poorly understood, particularly regarding the ontogenic landscape of iPSC-derived NK (iNK) cells produced and the influence that the differentiation strategy employed may have on the iNK profile.
Methods: To investigate this question, we conducted a comparative analysis of two sets of iNK cells generated from the same iPSC line using two different protocols: (i) a short-term, clinically compatible feeder-free protocol corresponding to primitive hematopoiesis, and (ii) a lymphoid-based protocol representing the definitive hematopoietic step.
mRNA applications have undergone unprecedented applications-from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production.
View Article and Find Full Text PDFIntroduction: Foot and ankle alignment plays a pivotal role in human gait and posture. Traditional assessment methods, relying on 2D standing radiographs, present limitations in capturing the dynamic 3D nature of foot alignment during weight-bearing and are prone to observer error. This study aims to integrate weight-bearing CT (WBCT) imaging and advanced deep learning (DL) techniques to automate and enhance quantification of the 3D foot and ankle alignment.
View Article and Find Full Text PDFHow cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors.
View Article and Find Full Text PDFIdentifying true DNA cellular barcodes among polymerase chain reaction and sequencing errors is challenging. Current tools are restricted in the diversity of barcode types supported or the analysis strategies implemented. As such, there is a need for more versatile and efficient tools for barcode extraction, as well as for tools to investigate which factors impact barcode detection and which filtering strategies to best apply.
View Article and Find Full Text PDF