Atrial fibrillation (AFib) and the risk of its lethal complications are propelled by fibrosis, which induces electrical heterogeneity and gives rise to reentry circuits. Atrial TREM2 macrophages secrete osteopontin (encoded by ), a matricellular signaling protein that engenders fibrosis and AFib. Here we show that silencing in TREM2 cardiac macrophages with an antibody-siRNA conjugate reduces atrial fibrosis and suppresses AFib in mice, thus offering a new immunotherapy for the most common arrhythmia.
View Article and Find Full Text PDFBackground: Viral infections can cause acute respiratory distress syndrome (ARDS), systemic inflammation, and secondary cardiovascular complications. Lung macrophage subsets change during ARDS, but the role of heart macrophages in cardiac injury during viral ARDS remains unknown. Here we investigate how immune signals typical for viral ARDS affect cardiac macrophage subsets, cardiovascular health, and systemic inflammation.
View Article and Find Full Text PDFAfter myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Since the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here, we show in humans and female mice that hematopoietic progenitor cells increase fatty acid metabolism after MI.
View Article and Find Full Text PDFIntroduction And Objective: Patients with the 22q11.2 deletion syndrome (22q11DS) frequently display cardiological and psychiatric diseases, but are also at increased risk for endocrine manifestations. The aim of this study was to evaluate the screening, prevalence, and management of hypoparathyroidism and thyroid disease in patients with 22q11DS, to evaluate the metabolic profile, and to compare these results with current literature and guidelines.
View Article and Find Full Text PDFBackground: The greatest change in the treatment of people living with type 1 diabetes in the last decade has been the explosion of technology assisting in all aspects of diabetes therapy, from glucose monitoring to insulin delivery and decision making. As such, the aim of our systematic review was to assess the utility of these technologies as well as identify any precision medicine-directed findings to personalize care.
Methods: Screening of 835 peer-reviewed articles was followed by systematic review of 70 of them (focusing on randomized trials and extension studies with ≥50 participants from the past 10 years).