Purpose: Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings.
Methods: Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients.
We hypothesize that diabetes-induced impaired collateral formation after a hindlimb ligation in rats is in part caused by intracellular glycation and that overexpression of glyoxalase-I (GLO-I), i.e. the major detoxifying enzyme for advanced-glycation-endproduct (AGE) precursors, can prevent this.
View Article and Find Full Text PDFThis paper tries to emphasize two relevant concepts: the first is that type 2 diabetes is a chronic diseases characterized by both a dysmetabolism and a chronic oxidative stress. A variety of orthodox drugs are somewhat able to correct the metabolic alterations, but do not deal with the chronic inflammation. Consequently, as the validity of precisely treating blood with therapeutic ozone concentrations in restoring a redox homeostasis has been now demonstrated, the integration of ozone therapy appears essential for a rational treatment of type 2 diabetes.
View Article and Find Full Text PDFAims: Rupture-prone atherosclerotic plaques are characterized by inflammation and a large necrotic core. Inflammation is linked to high metabolic activity. Advanced glycation endproducts (AGEs) and their major precursor methylglyoxal are formed during high metabolic activity and can have detrimental effects on cellular function and may induce cell death.
View Article and Find Full Text PDF