Publications by authors named "M Hugunin"

The Bcl-2 family of proteins plays a critical role in controlling immune responses by regulating the expansion and contraction of activated lymphocyte clones by apoptosis. ABT-737, which was originally developed for oncology, is a potent inhibitor of Bcl-2, Bcl-x(L), and Bcl-w protein function. There is evidence that Bcl-2-associated dysregulation of lymphocyte apoptosis may contribute to the pathogenesis of autoimmunity and lead to the development of autoimmune diseases.

View Article and Find Full Text PDF

The MEK kinase TPL-2 (also known as Cot) is required for lipopolysaccharide (LPS) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade in macrophages and consequent upregulation of genes involved in innate immune responses. In resting cells, TPL-2 forms a stoichiometric complex with NF-kappaB1 p105, which negatively regulates its MEK kinase activity. Here, it is shown that lipopolysaccharide (LPS) stimulation of primary macrophages causes the release of both long and short forms of TPL-2 from p105 and that TPL-2 MEK kinase activity is restricted to this p105-free pool.

View Article and Find Full Text PDF

Interferon-gamma-inducing factor (IGIF, interleukin-18) is a recently described cytokine that shares structural features with the interleukin-1 (IL-1) family of proteins and functional properties with IL-12. Like IL-12, IGIF is a potent inducer of interferon (IFN)-gamma from T cells and natural killer cells. IGIF is synthesized as a biologically inactive precursor molecule (proIGIF).

View Article and Find Full Text PDF

Recent studies have shown that protein kinase C (PKC) delta is proteolytically activated at the onset of apoptosis induced by DNA-damaging agents, tumor necrosis factor, and anti-Fas antibody. However, the relationship of PKC delta cleavage to induction of apoptosis is unknown. The present studies demonstrate that full-length PKC delta is cleaved at DMQD330N to a catalytically active fragment by the cysteine protease CPP32.

View Article and Find Full Text PDF

The Caenorhabditis elegans cell death gene, ced-3, encodes one of the two proteins required for apoptosis in this organism. The primary sequence similarities between Ced-3 and the mammalian interleukin-1beta converting enzyme (ICE) suggest that these two proteins may have functionally similar active sites and that Ced-3 may function as a cysteine protease. Here we report that in vitro transcribed and translated Ced-3 protein (p56) underwent rapid processing to smaller fragments.

View Article and Find Full Text PDF