Publications by authors named "M Hrynyk"

Current influenza vaccines could be augmented by including recombinant neuraminidase (rNA) protein antigen to broaden protective immunity and improve efficacy. Toward this goal, we investigated formulation conditions to optimize rNA physicochemical stability. When rNA in sodium phosphate saline buffer (NaPBS) was frozen and thawed (F/T), the tetrameric structure transitioned from a "closed" to an "open" conformation, negatively impacting functional activity.

View Article and Find Full Text PDF

It is of particular interest for biopharmaceutical companies developing and distributing fragile biomolecules to warrant the stability and activity of their products during long-term storage and shipment. In accordance with quality by design principles, advanced kinetic modeling (AKM) has been successfully used to predict long-term product shelf-life and relies on data from short-term accelerated stability studies that are used to generate Arrhenius-based kinetic models that can, in turn, be exploited for stability forecasts. The AKM methodology was evaluated through a cross-company perspective on stability modeling for key stability indicating attributes of different types of biotherapeutics, vaccines and biomolecules combined in in vitro diagnostic kits.

View Article and Find Full Text PDF

The sensitivity of amphibians to Ranavirus may be increased by exposure to other environmental stressors, including chemical contaminants. Neonicotinoid insecticides comprise 27% of the global insecticide market and have been detected in wetlands and other aquatic habitats. The present study focused on the effects of exposure of pre-metamorphic Xenopus laevis to the neonicotinoid, imidacloprid (IMI) on sensitivity to frog virus 3 (FV3) infection.

View Article and Find Full Text PDF

Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischaemia, inflammation and infection costing $7.5 billion/year in the U.S.

View Article and Find Full Text PDF

Poly (lactic-co-glycolic acid) (PLGA) copolymers have been extensively used in cancer research. PLGA can be chemically engineered for conjugation or encapsulation of drugs in a particle formulation. We reported that oseltamivir phosphate (OP) treatment of human pancreatic tumor-bearing mice disrupted the tumor vasculature with daily injections.

View Article and Find Full Text PDF